Hyperspectral Image Classification With Independent Component Discriminant Analysis
نویسندگان
چکیده
منابع مشابه
Principal Component Analysis for Hyperspectral Image Classification
The availability of hyperspectral images expands the capability of using image classification to study detailed characteristics of objects, but at a cost of having to deal with huge data sets. This work studies the use of the principal component analysis as a preprocessing technique for the classification of hyperspectral images. Two hyperspectral data sets, HYDICE and AVIRIS, were used for the...
متن کاملSpectral Regression Discriminant Analysis for Hyperspectral Image Classification
Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for Hyperspectral Image Classification. The manifold learning methods are popular for dimensionality reduction, such as Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, a disadvantage of many manifold learning methods is that their computa...
متن کاملNormalization Discriminant Independent Component Analysis
In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from t...
متن کاملAnalyzing Hyperspectral Data with Independent Component Analysis
Hyperspectral image sensors provide images with a large number of contiguous spectral channels per pixel and enable information about diierent materials within a pixel to be obtained. The problem of spectrally unmixing materials may be viewed as a speciic case of the blind source separation problem where data consists of mixed signals (in this case minerals) and the goal is to determine the con...
متن کاملIndependent-component analysis for hyperspectral remote sensing imagery classification
Harold Szu, FELLOW SPIE Office of Naval Research Arlington, Virginia 22217 Abstract. We investigate the application of independent-component analysis ICA to remotely sensed hyperspectral image classification. We focus on the performance of two well-known and frequently used ICA algorithms: joint approximate diagonalization of eigenmatrices JADE and FastICA; but the proposed method is applicable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2011
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2011.2153861